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The primary objective of this paper is to obtain the detailed description of the flow 
field near an elliptic cylinder that  is placed perpendicularly in a uniform stream a t  
low Reynolds number. Attention is paid to the shape effects due to the flattening of 
the cylinder and to the inertial effects of the fluid. The analysis resorts to the method 
of matched asymptotic expansions. The main part of the inner expansion describes 
the near flow field as a Stokes flow, which is characterized by the singularities 
arranged a t  the two foci of the ellipse. The first three terms O(R)  (R  = Reynolds 
number) in the inner expansion are developed, and the flow aspects under the 
influence of the fluid inertia are investigated. The streamline patterns with one or 
two vortices round a finite flat plate of zero thickness, which is a special case of the 
elliptic cylinder, are presented. 

1. Introduction 
The subject of the present paper is rather classical, and analyses based on Oseen's 

linearized equation were given by Tomotika & Aoi (1953), Hasimoto (1953) and Imai 
(1954). However, the approximate equation is thought only to be valid far from the 
body and insufficient for the description of t.he near flow field. As is well known, a 
more complete approach to this problem may be made by using the method of 
matched asymptotic expansions. 

The method was developed first by Kaplun (1957) and Proudman & Pearson (1957) 
to  determine the flows past a sphere and a circular cylinder in a slow uniform stream, 
and i t  has been used in various problems concerning low-Reynolds-number flows. 
Bretherton (1962) gave the detailed discussion of the slow viscous motion round a 
cylinder in a simple shear. Chester & Breach (1969) continued the analysis of 
Proudman & Pearson in the case of the flow past a sphere, and Skinner (1975) did 
so for the case of the flow past a circular cylinder. Such works have been reviewed 
in the textbook by Van Dyke (1975). Recently, Bentwich & Miloh (1978) and Sano 
(1981) have treated the interesting problem of the unsteady flow past a sphere, and 
Umemura (1982) has studied the problem of the steady flow past two equal circular 
cylinders. 

In  the present paper, Umemura's method of coordinate transformation through 
matching procedure is applied to the analysis of the flow past an elliptic cylinder, 
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FIGURE 1. Configuration. 

and the characteristics of the flow near the cylinder are discussed in detail with 
particular attention both to the shape effects due to the flattening of the cylinder 
and to the effects of fluid inertia. The shape effects can be investigated by using the 
elliptic coordinates for the description of the inner expansion. On the other hand, the 
main part of the inner expansion does not include the effects of inertia except the 
implicit dependence upon the Reynolds number, which results from the peculiarity 
of two-dimensional problems, and it describes the flow field near the cylinder as a 
Stokes flow.The explicit inertial effects appear first in the description of O(R) for the 
inner expansion. The expansion procedure presented in this paper is almost along with 
Skinner’s work for the flow past a circular cylinder except for a slight difference due 
to the choice of the expansion coefficients, and we shall give a simplified treatment 
to the matching O( l ) ,  since our principal concern is the qualitative behaviour of the 
perturbed solutions. The first three terms O(R) in the inner expansion will be 
developed, and the inertial effects of O(R) upon the flow aspects may almost be 
clarified by these three terms. We shall investigate in detail the streamline patterns 
round a finite flat plate under the influence of fluid inertia. The familiar effect of the 
fluid inertia is the formation of twin vortices behind the plate. However, the 
asymmetric flow patterns with a single vortex also exist for the restricted range of 
the angle of attack. 

2. Formulation 
The configuration is shown in figure 1.  Let us consider an elliptic cylinder placed 

perpendicularly in a uniform stream of velocity W. The half-lengths of the major and 
minor axes of the ellipse are u and b respectively. The length of the cylinder is infinite, 
and the flow considered is two-dimensional. The elliptic coordinates are related to 
Cartesian coordinates by 

x = ccoshEcosy, y = csinhtsiny, (2.1) 
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where c is the distance between the centre and the focus of the ellipse. The coordinate 
curves 5 = constant represent a series of ellipses with the foci ( f c ,  0) on the x-axis. 
If the surface of the elliptic cylinder is expressed by the coordinate curve 5 = to then 
we have 

c go = iln- a+b E = - = sechg,, 
a - b '  U 

(2 .2)  

where E denotes the eccentricity of the ellipse. I n  addition, we take polar coordinates 
( r ,  O ) ,  the polar axis of which coincides with the positive x-axis. The direction of the 
uniform stream is assumed to be a t  an angle a with the major axis of the ellipse. We 
consider the coordinates x, y and r normalized by 2a and the fluid velocity normalized 
by W, and denote dimensional quantities by the superscript * when they are needed. 
Corresponding with this normalization, the Reynolds number is defined by 
R = 2 a W / v ,  where v represents the kinematic viscosity of the fluid, and we assume 
W to be sufficiently small. 

The problem is to obtain the solution of the Navier-Stokes equation 

V4$ = -R*J($, V"), (2.3) 

where @ is the non-dimensional stream function normalized by 2a W and J( , ) is the 
Jacobian. The solution must satisfy the no-slip condition on the surface of the 
cylinder and approach the uniform stream a t  infinity. 

If we seek the approximate solution of $ valid asymptotically in the limit as W --f 0, 
the method of solution is well known. I n  the inner region, where W r  4 1 ,  the governing 
equation for @ is (2.3), and we assume an expansion of the form 

where 

Because the flow in this region is thought to  depend strongly on the body shape, we 
use the elliptic coordinates for the inner expansion. I n  the outer region, on the other 
hand, we introduce the outer variables F = Rr and Y(P) = R$(r), and assume an 
expansion 

where 

Y(F; R )  = ?sin (O-a)+ Y(P; W ) ,  

Y ( P ; R )  = c F,(R) Yn(F), 
00 

n-1 

The first term of the right-hand side of (2 .6)  represents the uniform stream, and the 
governing equation for Y becomes 

0 4 ~ - e . W ~  = -3(Y,02Y), ( H )  

where e is the unit vector in the direction of the uniform stream. Because the flow 
field far from the body is thought to be little affected by its shape and described by 
a function with a singularity at the origin, we use the polar coordinates for the outer 
expansion. 

The expansion (2 .4)  is to satisfy the no-slip condition on the cylinder surface and 
the expansion (2 .6)  the uniform stream condition at infinity, and the construction 
of the solution can be completed by the matching procedure applied in the 
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overlapping domain of the two regions ( r+  00, r"+O). I n  this procedure, we use the 
transformation equations 

6 x ln(4;;). 7 x e, (2.10) 

which are correct in the approximation O(R). 

3. Stokesflow 
If the expansions (2.4) and (2.7) are substituted into (2.3) and (2.9) respectively, 

we obtain a series of perturbation equations for Iff, and Y, by choosing f ,  and F, 
properly. As far as the order of approximation is lower than O(R), we take 
f o ,  12 = 4, , = l /( ln R),, and the perturbation equations for Iffo, , and Yo, , become the 
Stokes and the Oseen equations respectively, where the subscript 0 indicates the 
zeroth order of R. 

Expressed by the elliptic coordinates, the Stokes equation becomes 

h2AhPA@ = 0, (3.1) 
where 

The required solution of (3.1) to this order can easily be obtained by the method of 
separation of variables, and we have 

c 1cr0, ,Iz = A,{ (6-  to) cosh 5+ sinh 6, cosh to cosh 6 -  cosh2 6, sinh [} cos 7 

- B n ( ( ~ - ~ o ) s i n h ~ - s i n h ~ o c o s h ~ o s i n h ~ + s i n h 2 ~ , c o s h ~ ) s i n ~ ,  (3.3) 

which already satisfies the no-slip condition on the cylinder surface. 
On the other hand, the general solution of the Oseen equation in the polar 

coordinates was well investigated by Tomotika & Aoi (1950), and the required part 
of the solution is 

00 sinm(8-a) a, cos m(#- a )  
> (3.4) m +Dn C Xrn(F)r" 

m m - o  
y o , ,  = Cn C $m(tr")r" 

m - 1  
where 

$m = 2KiIrn+&(Irn-l+Irn+1), Xm = t E r n & ( I r n - l - I r n + 1 ) ~  (3.5) 

and I, and K ,  are the modified Bessel functions of the first and second kind 
respectively, E ,  being the Neumann factor. The solution (3.4) is of course the 
homogeneous one for the perturbation equation (2.9). Although the particular 
solutions exist for !Po,, (n 2 2) and also participate in the matching O(l) ,  the 
lowest-order contribution from them to the inner expansion is O[l/(ln R)3] and affects 
only the determination of the constants A, and B, (n 2 3). For simplicity we shall 
neglect the contributions from the particular solutions in the matching O(1). 

If the matching condition is applied between (3.3) and (3.4) together with the use 
of (2.10), we obtain the recurrence formulae for A,, B,, C, and D,, which yield the 
results 

I tY-l-tn-1 A t t n - l - q - l t  -[:I:]. A ,  = sina,  B, = cosa, [::] = t+-tL - [ B, P I + + -  t+ - t- 
A,  = +A,(2(T--p) - cos 201) +&B, sin 2a, 

B, = &Al sin 2a +&B1{2(T-q) + cos 2a}, 

C,  = A,sina+B,cosa, D, =-A,cosa+B,sina, I 
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FIGURE 2. Pressure distributions on elliptic cylinders in Stokes flow for (z = 90' and R = 0.1. 
The pressure coefficient C,, is defined by C,, = pz /& W2 = Po/@, where p denotes the density of the 
fluid. 

11 

r= $-y+21n2, I 
and y is Euler's constant. We can sum up the main part of the inner expansion 
determined above as $o = Cg,, $o, J(1n R),, which is exact to O[l/(ln R)7 and can 
be obtained if we replace A ,  and B, with 

in (3.3). The flow field determined by $o is what is called the Stokes flow, the 
characteristics of which will be investigated below. 

The pressure and the vorticity in the Stokes flow can be calculated from *o as 

(3.9) 
8a 8a 

polT = A$, + B$u, w o / x  = A&, + B&, 
A (3.10) 

coshcsinq sinh 6 cos 7 where 
p, = wu = p u  = - w y  = cash 2E- cos 27 ' cash 25 - cos 27 ' 

and the subscripts U and V denote the quantities corresponding to the uniform 
streams in the x- and y-directions, respectively. 

We show in figure 2 the pressure distributions on the surface of the elliptic cylinder 
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FIGURE 3. Equipressure lines and equivorticity lines in Stokes flow. The broken line 
represents the critical ellipse of E = d\/t. 

0 

when 01 = goo. We find that the aspect of the distribution for e > differs from that 
for e < d/s. When e < di, pressure falls downstream from the stagnation point 
(7 = 2 7 0 O )  nearly in the same manner as in the case of a circular cylinder. When 
E > di, on the other hand, the maximum appears apart from the stagnation point. 
I n  order to see the action of the singular points, we show in figure 3 the equipressure 
lines and the equivorticity lines calculated from (3.10). We show only the curves in 
the fourth quadrant, taking the symmetry into account. Because the functions 
defined by (3.10) do not depend on e, figure 3 shows the equipressure lines and the 
equivorticity lines round an elliptic cylinder of arbitrary eccentricity as a result of 
the normalization of the coordinate axes by c .  The characteristic of the pressure 
distribution for E < ~ ‘ 4  shown in figure 2 corresponds to  the fact that  the situation 
of the equipressure lines outside the critical ellipse of E = di, which is drawn by the 
broken line in figure 3, is fundamentally the same as that of circular curves by a 
Stokeslet in the case of a circular cylinder. Namely, although the Stokes flow round 
an elliptic cylinder is characterized by the singularities arranged at the two foci of 
the ellipse, the effect of the singularities being separated from each other does not 
substantially reach outside the cylinder surface, where the pressure field similar to  
that round a circular cylinder prevails. When e > z/+, on the other hand, i t  goes 
beyond the cylinder surface, as a result of which the maximum of the surface pressure 
appears a t  a different point from the stagnation point. The maximum lies a t  the point 
17 = c0s-l [ (2e2 -  l)d/e], which is the intersection of the cylinder surface and the circle 
of radius c in the dimensional coordinates. Especially when e = 1 ,  the pressure on 
the flat plate varies in proportion to [ l  - (ZS)~]I-+, and on the whole surface, except 
a t  the ends of the plate, we find that a2@/i3y21y-o = 0 and i32@/i3y31y-o > 0, which in 
general indicate the characteristics of flows a t  separation points. Expanded in power 
series of 6 and 7 in the neighbourhood of the focus, the equations defining the elliptic 
coordinates become the equations defining the parabolic coordinates : 

c c  c 
x - - x -((52-$), y x -&, 

2a 4a 2a 
(3.1 1) 
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by neglecting higher-order terms, and the stream function becomes 
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(3.12) 

Therefore the independent action of the singularities is the generation of flow round 
the convex surface of a parabolic body. I n  such a flow the streamlines are also 
parabolas, and the maxima of the pressure along the streamlines lie on the line x* = c. 
I n  the case of the elliptic cylinder, the maximum of the surface pressure lies on a circle 
r* = c as a result of the interaction of the singularities arranged a t  the two foci of 
the ellipse. 

The anomalous behaviour of the pressure distributions mentioned above may be 
understood by considering the balance of the forces acting on the rectangular fluid 
elements, the bases of which lie on the surface of the elliptic cylinder. The shearing 
force -7, from the cylinder surface acts on the base of a fluid element. If T is the 
total amount of the shearing forces acting on the other sides of the element, the 
balance equation of the forces in the direction of the tangent to the surface is 
7 - 7, - Ap = 0, where A p  denotes the pressure increase in that direction. 7, x 0 holds 
a t  points where the direction of the normal to  the surface almost agrees with that 
of the uniform stream. As the cylinder becomes flatter, the region of 7, x 0 spreads 
out wider, where we have Ap > 0. Especially in the case of the flat plate, we have 
7, = 0 and Ap > 0 on the whole surface of the plate except its ends. 

Now, we shall give the expressions for the drag and lift coefficients of the elliptic 
cylinder. If each stress component derived from +, is integrated on the cylinder 
surface, we obtain the non-dimensional forces in the x- and y-directions F, = - 4xB 
and Fy = -47cA (the moment M = 0 ) ,  which give the drag and lift coefficients 

F, cos a + Fy sin a c, = 
gR 

cos 2a 2 In R+ 1 + 2y- 8 In 2 + 2 In [ 1 +  (1  - s2)4] + [1 + (1  - E 2 ) t  
E 

47c - , -  - --- 
R (In R - t+) (In R - t-) 

(3.13) 
r 1 2  

J- sin 201 
- F, sins+ Fy cosa 47c 1 1 + (1  -c2)+ - c, = -- 

gR R (1nR-t+) (1nR-t-) ’ (3.14) 

where t, can be written by use of E and 01 as - 

1 E E 
t, = - y + 4 In 2 -In [ 1 + (1  -e2)?] kz{ 1 + 2 [ 

1 + (1  -€2)1 

(3.15) 

The expressions (3.13) and (3.14) are readily shown to be identical with the results 
obtained from the first approximation of the Oseen equation (Hasimoto 1953; Imai 
1954). For E = 0, (3.13) reduces to 

(3.16) 

which is also the result for a circular cylinder obtained by Lamb (191 1) using the Oseen 
equation. The higher-order corrections to (3.13) and (3.14) would be obtained if the 

10 F L Y  136 
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contributions from the nonlinear term of (2.9) to the inner expansion were included 
in the matching procedure O( l ) ,  and the inner solutions O(R2) were developed using 
the same method that Skinner (1975) applied to a circular cylinder. It is, however, 
beyond our scope. In  $4 we shall derive the inner solutions O(R), which give no 
corrections to the forces exerted on the cylinder but enable us to see the generation 
of vortices behind it. 

4. Analysis of inertial effects 
Now we examine the contributions from the higher-order terms which have been 

omitted in the matching procedure of $3. If we write down the asymptotic form of 
Yo,n (n  2 1) as r"+O in more detail and investigate its contribution to the inner 
expansion (&, Yo, J R )  paying attention to the terms O(R), it can be inferred that 
the inner solution $1, (n 2 0) O(R) has the functional form related to 27 and the 
expansion coefficient for i t  becomesf,, = R/(ln R). (n  2 0) ,  that is to say, the inner 
expansion (2.4) has the following definite form : 

By the substitution of the expansion (4.1) into (2.3), we know that the perturbation 
equation for $19 or is the Stokes equation and for pl, (n 2 2) it becomes the 
inhomogeneous equation 

The rather lengthy calculation yields 

= Ln(cosh2(E-[,)-1}sin2q 

+ M n ,  l { ( E - t o - + )  (cosh25-~0sh2!&)+ (5-to)sinh25& 
+ Mn, , ( s i n h 2 ~ - s i n h 2 ~ o - 2 ( ~ - ~ o )  cosh2to} 
- Mn, , {cosh2~-cosh2~o-2 (~ -~o)  sinh2Eo} 

+[Mn,,{t-to++(e-2~+2~0- 1)) 

+Mn, ,{cosh2(~-~o)- l } ]cos2~ (n = 0, l), (4.3) 

(4.4) 

where the superscripts h and p denote the homogeneous and particular solutions of 
(4.2), and each of them satisfies the no-slip condition on the cylinder surface.? The 
asymptotic forms of and $1,1 as r+co become r2sin2(8-a) and/or r2 except 
the multiplication of constants. In  other words, @ l , o  and @,?, are the solutions for 
the Stokes flow round an elliptic cylinder which is placed in a pure straining flow or 
in a rigid-body rotational flow. These perturbed solutions, which are derived from 
the Stokes equation, represent the effects due to the inertia of the fluid in the far flow 
field. 

and the subsequent mathematical details in this section have 
been lodged in the editor's files, and copies of them are obtainable either from the first author or 
from the editorial office. 

t The very long expression for ~ y ,  
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Before we determine the unknown coefficients L ,  and M,, , - M,, (n = 0, 1 , 2 )  in 
(4.3) and (4.4) by applying the matching condition, we must know the contribution 
from the particular solution E,2 in Yo,2, which was omitted in the matching 
procedure treated in $3. The perturbation equation for Yo,2 was originally 

(4.5) V Y ~ ,  2- e * W  yo, = -J( yo, I, V2 Yo, 

and the particular solution of this equation can be written in the integral 
representation 

1 2% 00 ---do a u l f : 2 -  so r", dr", do, {In] F- fl I +e~cx-xl)Ko(~I F - f ,  I)} F(yl,  d,), (4.6) ax 
where yl and 8, are the integration variables, and we have defined X = Fcos (8-a), 
F(r",8) = - J( Yo, ,, v2 Yo, Although it would be very hard to obtain the definite form 
of ulf:, 2, we can easily find its contribution to the matching O(R) in the description 
of the inner variables by examining the corresponding part of the inner expansion 
for the flow round a circular cylinder. The careful examination reveals that q,2 
should have the following contribution to the matching of that order: 

!Q, x {&(lnr")2 -Q(r+t) In r"+ Q P sin 2 ( d - a )  (4.7) 

as r"+O. The constant C can be evaluated from (4.6), and we find C x 0.0515. 
The adopted matching procedure is as follows. We first rewrite the asymptotic 

forms of the inner solutions (4.3) and (4.4) as T+ 00 in terms of the outer variables. 
As for the outer solutions, we write down the asymptotic forms of (3.4) for Ye, , and 
Yo, as r"+O, of which we need only the functions related to 28 and those of r" alone. 
Moreover, the asymptotic form (4.7) of !Q, must be taken into account for Yo, 2. And 
paying attention to the expansion coefficients fl, and 4, ,, we have determined L, 
and M,, , - M,, (n = 0 , 1 , 2 )  so that both of the expansions may agree in the limit 
R+O. 

5. Flow aspects 
Let us first examine the shearing-force distributions on the surface of the elliptic 

cylinder. If the shear-stress component of the pressure tensor is evaluated on the 
cylinder surface E = Eo, we have 

P&=50 = -h2%1 . 
5=50 

The substitution of 2 / 7 3  

into (5.1) yields p& = as a function of a, E and R. In the following we typically 
show the results for R = 0.1. Figure 4 ( a )  shows the shearing-force distributions on 
the rear surface of the cylinder for u = 90° and several values of E near unity, where 
the broken lines represent the results for the Stokes flow. As easily inferred from (5.  I ) ,  
a turning point of CE corresponds to a branch point of the zero streamline. C, changes 
its sign at 7 = 90° for E -c 0.999, and the zero streamline branches only at  the rear 
stagnation point. For E > 0.999, on the other hand, C, changes its sign also at the 
other two points, where the zero streamline separates from the cylinder surface, that 
is to say, the twin vortices appear. It should, however, be noted that E = 0.999 is 
not the exact critical value of eccentricity, which is slightly smaller than 0.999. The 

10-2 
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FIGURE 4. Shearing-force distributions on elliptic cylinders for aB = 0.1. The skin-friction 
coefficient C, is defined by C, = p ~ , 1 5 = s a / ~ W 2  = p& = ,,/3jW. (a )  a = 90'; (b )  E = 1 (flat plate). 

twin vortices spread out wider as the cylinder becomes flatter. Especially when e = 1, 
viz in the case of the flat plate of zero thickness, the separation occurs at each end 
of the plate and the standing twin vortices exist for arbitrary non-zero W if a = 90°. 
It is also found from figure 4 ( b )  for e = 1 that the zero streamline begins to separate 
at  one end of the plate when the angle of attack a is greater than about 8 7 O ,  and 
a single vortex is expected to be formed for the narrow range of a. 

We show a series of streamline patterns round a flat plate in figure 5(a)-(c) for 
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FIGURE 5. Streamline patterns round a flat plate for R = 0.1: (a) a = 89', $ = 0, +0.000002, 

0, k0.000002, k0.00005, kO.0001, +0.0002, f0.0005. 
- +0.00005; ( b )  a = 89.9O, $ = -0.000002, 0, +0.000002, +0.00005. (c) a = 90°, $ = T0.000002, 
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FIQURE 6. Moment coefficient for 88 = 0.1. It is defined by C, = M*/{$W2(2a)2} = M / i R ,  
where M is the non-dimensional moment around the origin. 

a = 89', 89.9' and 90' respectively. The transition process is clearly found in these 
figures. A vortex region which comes out at one end of the plate grows towards the 
centreline as a approaches 90'. Simultaneously the branch of the zero streamlice 
stretching from another end bends more sharply, and at last this is connected with 
the outer boundary line (zero streamline) of the vortex region when a = 90'. It is 
also found that the constricted streamline of $ = 0.000002 outside the vortex in 
figure 5 (b )  is cut off to form the closed streamline inside the right-hand vortex in figure 
5 ( c ) .  Taneda (1968) carried out a visualization of the twin vortices behind a thin flat 
plate of thickness ratio 0.0154 which was placed normal to the uniform stream. Figure 
5 ( c )  seems to correspond with the photograph for R = 0.440 in his paper. The 
comparison should, however, be qualitative because the flat plate is of zero thickness 
in our calculation and its ends are singular points, so that mathematically the twin 
vortices, however small they may be, always appear for non-zero R. Another 
difficulty arises from the fact that our expansions are valid only asymptotically in 
the limit as R-tO. The range of validity cannot be specified accurately. It can only 
be remarked that the calculated results for R = 0.1 are not so far from the exact ones 
to be obtained from the Navier-Stokes equation. 

Finally, we can calculate from the first three terms O(R) the moment exerted on 
the elliptic cylinder and we show it in figure 6, in which the counterclockwise moment 
is of positive sign, so that the head-up moment is exerted on the cylinder. 

The authors are grateful to Professors Hakuro Oguchi, Koichi Oshima, Hideo 
Takami, Junzo Sat0 and Hirotoshi Kubota for many valuable comments during the 
course of this work. They are indebted to Professor Hidenori Hasimoto for his helpful 
discussion and to Professor Sadatoshi Taneda, who kindly sent one of the authors 
a reprint of his own paper. The authors also wish to express their thanks to the editor 
and the referees for many useful comments on the manuscript. 
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